Receiver operating characteristic analysis for intelligent medical systems-a new approach for finding confidence intervals
نویسندگان
چکیده
Intelligent systems are increasingly being deployed in medicine and healthcare, but there is a need for a robust and objective methodology for evaluating such systems. Potentially, receiver operating characteristic (ROC) analysis could form a basis for the objective evaluation of intelligent medical systems. However, it has several weaknesses when applied to the types of data used to evaluate intelligent medical systems. First, small data sets are often used, which are unsatisfactory with existing methods. Second, many existing ROC methods use parametric assumptions which may not always be valid for the test cases selected. Third, system evaluations are often more concerned with particular, clinically meaningful, points on the curve, rather than on global indexes such as the more commonly used area under the curve. A novel, robust and accurate method is proposed, derived from first principles, which calculates the probability density function (pdf) for each point on a ROC curve for any given sample size. Confidence intervals are produced as contours on the pdf. The theoretical work has been validated by Monte Carlo simulations. It has also been applied to two real-world examples of ROC analysis, taken from the literature (classification of mammograms and differential diagnosis of pancreatic diseases), to investigate the confidence surfaces produced for real cases, and to illustrate how analysis of system performance can be enhanced. We illustrate the impact of sample size on system performance from analysis of ROC pdf's and 95% confidence boundaries. This work establishes an important new method for generating pdf's, and provides an accurate and robust method of producing confidence intervals for ROC curves for the small sample sizes typical of intelligent medical systems. It is conjectured that, potentially, the method could be extended to determine risks associated with the deployment of intelligent medical systems in clinical practice.
منابع مشابه
Receiver Operating Characteristic analysis for Intelligent Medical Systems – a new approach for finding non – parametric confidence intervals
متن کامل
Sample Size Determination Using Roc Analysis
The paper presents a new method of sample size determination (SSD) based on performance evaluation of systems under study. The method builds upon previous work on Bayesian approach to nonparametric receiver operating characteristics (ROC) analysis with estimation of probability density functions and confidence intervals for parameters of ROC curve. Technical details of the method together with ...
متن کاملApplication of adjusted-receiver operating characteristic curve analysis in combination of biomarkers for early detection of gestational diabetes mellitus
Introduction: In medical diagnostic field, evaluation of diagnostic accuracy of biomarkers or tests has always been a matter of concern. In some situations, one biomarker alone may not be sufficiently sensitive and specific for prediction of a disease. However, combining multiple biomarkers may lead to better diagnostic. The aim of this study was to assess the performance of combination of bio...
متن کاملReceiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation
This review provides the basic principle and rational for ROC analysis of rating and continuous diagnostic test results versus a gold standard. Derived indexes of accuracy, in particular area under the curve (AUC) has a meaningful interpretation for disease classification from healthy subjects. The methods of estimate of AUC and its testing in single diagnostic test and also comparative studies...
متن کاملRoc Analysis in the Evaluation of Intelligent Medical Systems
A large number of intelligent medical systems exist, but few are in routine clinical use. This is due, in part, to a lack of a robust objective method to quantify the performance of such systems. Potentially, ROC analysis could form a basis for a robust and objective evaluation of intelligent medical systems, but existing methods of ROC analysis require large sample sizes to be statistically va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on bio-medical engineering
دوره 47 7 شماره
صفحات -
تاریخ انتشار 2000